

FPD

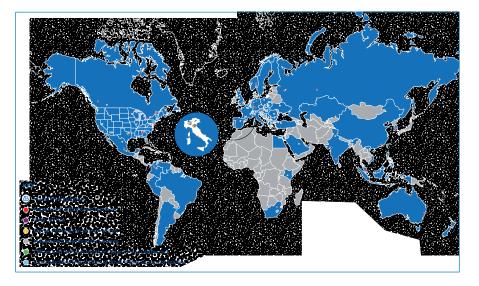
THE INTERNATIONAL EPD® SYSTEM

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

DYNAMON SX-N DYNAMON SR-N DYNAMON SX-130 GROUT TECH SYSTEM W

Programme: The International	Programme operator:	EPD registration number:	Publication date:	Valid until:	Geographical scope:	
EPD [®] System; www.environdec.com	EPD International AB	S-P-02803	2021-02-15	2026-02-14	International	



1. COMPANY DESCRIPTION / GOAL & SCOPE

Founded in 1937 in Milan, Italy, Mapei produces adhesives and complementary products for laying all types of floor, wall and coating materials, and also specializes in other chemical products used in the building industry, such as waterproofing products, specialty mortars, admixtures for concrete, cement additives, products for underground constructions and for the restoration of concrete and historical buildings.

There are currently 90 subsidiaries in the Mapei Group, with a total of 83 production facilities located around the world in 36 different countries and in 5 different continents. Mapei also has 31 central laboratories. Most locations are ISO 9001 and ISO 14001 or EMAS-certified.

Mapei invests 12% in its company's total work-force and 5% of its turnover in Research & Development; in particular, 70% of its R&D efforts are directed to develop eco-sustainable and environmentally friendly products, which give important contribution to all major green rating systems for eco-sustainable buildings such as LEED and BREEAM.

LEED V4 is the latest version of Leadership in Environmental and Energy Design, an American protocol that enables buildings to be certified as eco-sustainable according to parameters

and credits described in the most widely adopted green building criteria in the world. Issued by the GBC US, it is mandatory for all LEED projects registered after October 2016.

Numerous changes have been made to the previous version: Mapei products play a part in obtaining important credits thanks to their EPD's (type III environmental declarations) and their products with very low emission of VOC.

BREEAM®

Launched in the UK in 1990, **BREEAM** (BRE Environmental Assessment Method) is a

protocol for sustainable building practices adopted mainly in the United Kingdom and in Scandinavian countries with the version BREEAM NOR.

By adopting this protocol, thanks to their EDP's and very low emission of VOC, Mapei products help towards obtaining relative credits.

Furthermore, Mapei has developed a sales and technical service network with offices all over the world and offers an efficient Technical Assistance Service that is valued by architects, engineers, contractors and owners.

Mapei Nordic production site is located in Sagstua, Norway. The production site consists of 5 factories: two factories for powderbased products, two factories for liquid admixtures and one factory for thermosetting plastic-based products.

The total size of the buildings is 24.000 sqm. The energy in these factories are provided from water electricity, geothermal heating and remaining approximately 10 % heated by bio oil.

Mapei Nordic focuses both on energy and on logistic optimisation,

A MAPEI

as for example the systematic Lean based improvement work. With 60 - 80 trailers per day, and 1650 transport lines, requires Mapei to work actively on optimizing our logistic process.

The goal of the study is to provide necessary data and documentation to produce an EPD according to the requirements of PCR Environdec (version 1.0, 2019-12-20) under EN 15804:2012+A2:2019 and to have more comprehension about the environmental impacts related to Dynamon SX-N, Dynamon SR-N, Dynamon SX-130 and Grout Tech System W manufactured in Mapei AS located in Sagstua (NO), in year 2019, including packaging of the finished products.

Target audiences of the study are customers and other parties with an interest in the environmental impacts of **Dynamon SX-**N, Dynamon SR-N, Dynamon SX-130 and Grout Tech System W. This analysis shall not support comparative assertions intended to be disclosed to the public.

2. PRODUCT DESCRIPTION

Dynamon SX-N, Dynamon SR-N and Dynamon SX-130 are liquid superplasticizing admixtures based on modified acrylic polymers. They are all-round products to be used in nearly all types of concrete to improve the workability and/or reduce the amount of water needed.

Grout Tech System W is a liquid superplasticizers admixture for cement-based injection grout. It provides a stable, highly fluid mixture, also at low water-cement ratios.

All the products are classified according to EN 934-2 Standard: "Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures - Definitions, requirements, conformity, marking and labelling".

The three Dynamons are available in 25 liter cans, 200 liter drums, 1000 liter IBC tanks and in tank.

Grout Tech System W is delivered in 26,5 kg buckets and 1060 kg IBC-tanks.

For more information about the product see the TDS (Technical Data Sheet) on Mapei AS website (www.mapei.com/NO).

3. CONTENT DECLARATION

The main components and ancillary materials of the products included in this EPD are the following:

Table 1: Composition referred to 1m² of packaged product

Materials	Percentage (%) by mass
Modified Acrylic Polymers	< 60%
Additives	< 2%
Water	< 70%
Packaging Materials*	Percentage (%) by mass
Packaging Materials* Plastic (IBC)	Percentage (%) by mass < 0,5%

*concerning only Grout Tech System W

The products contain in a concentration higher than 0,1% (by unit weight) neither carcinogenic substances nor substances of very high concern (SVHC) on the REACH Candidate List published by the European Chemicals Agency.

4. DECLARED UNIT AND REFERENCE SERVICE LIFE

The declared unit is 1 kg of finished product.

Due to the selected system boundary, the reference service life of the products is not specified.

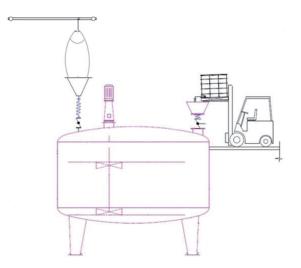
5. SYSTEM BOUNDARIES AND ADDITIONAL TECHNICAL INFORMATION

The approach is "cradle to gate" (A1–A3);

 A1, A2, A3 (Product stage): extraction and processing of raw materials and packaging (A1), transportation up to the factory gate (A2), manufacturing of the finished product (A3)

Tuble 2. System boundar	Proc sta		Constr	uction p stage	process	Use stage			End of life stage			Resource recovery stage					
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
Module	Al	A2	A3	A4	A5	В1	B2	B3	В4	B5	B6	B7	C1	C2	С3	C4	D
Modules declared	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Geography	EU, IT	EU	IT, NO	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Specific data			> 90%			-	-	-	-	-	-	-	-	-	-	-	-
Variation – products		N	ot-releva	int		-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites		N	ot-releva	int		-	-	-	-	-	-	-	-	-	-	-	-

Table 2: System boundaries


MND: Module Not Declared

A brief description of production process is the following:

The production process starts from raw materials, that are purchased from external and intercompany suppliers and stored in the plant. Bulk raw materials are stored in specific silos and added automatically in the production mixer, according to the formula of the product. Other raw materials, supplied in bags, big bags or plastic 1000 lt IBC, are stored in their warehouse and added automatically or manually to the mixer. The production is a discontinuous process, in which all the components are mechanically mixed in batches. The semifinished product is then packaged in plastic 1000 lt IBC or managed in bulk. The quality of final products is controlled before the sale.

Figure 2: Production process

6. CUT-OFF RULES AND ALLOCATION

Criteria for the exclusion of inputs and outputs (cut-off rules) in the LCA, information modules and any additional information are intended to support an efficient calculation procedure. They are not applied in order to hide data. Cut-off criteria, where applied, are described in Table 3.

Table 3: Cut-off criteria

Process excluded from study	Cut-off criteria	Quantified contribution from process
A3: production (auxiliary materials)	Less than 10 ⁻⁵ kg/kg of finished product	Sensitivity study demonstrates a relative contribution lower than 0,5%
A3: waste and particle emission	Less than 10 ⁻⁴ kg/kg of finished product	Sensitivity study demonstrates a relative contribution lower than 0,5%

For the allocation procedure and principles consider the following table (Table 4):

Table 4: Allocation procedure and principles

Module	Allocation Principle
Al	All data are referred to 1 kg of product A1: electricity is allocated to the specific production line
A3	All data are referred to 1 kg of packaged product A3-wastes: all data are allocated to the whole production plant

7. ENVIRONMENTAL PERFORMANCE AND INTERPRETATION

GWP

Climate change

GWPtotal - Global Warming Potential refers to the emission/presence of GHGs (greenhouse gases) in the atmosphere (mainly CO_2 , N_2O , CH_4) which contribute to the increase in the temperature of the planet. GWP-total considers:

- GWP-fossil
- GWP-biogenic

- GWP-luluc (land use and land use change)

Ozone Depletion

Ozone Depletion Potential refers to the degradation of the stratospheric layer of the ozone involved in blocking the UV component of sunrays. Depletion is due to particularly reactive components that originate from chlorofluorocarbon (CFC) or chlorofluoromethane (CFM).

ODP

Acidification

Acidification Potential refers to the emission of specific acidifying substances (i.e. NOx, SOx) in the air. These substances decrease the pH of the rainfall with predictable damages to the ecosystem.

AP

EP

Eutrophication

Eutrophication Potential refers to the nutrient enrichment, which determines unbalance in ecosystems and causes the death of the fauna and decreased biodiversity in flora. It considers:

- EP-freshwater: acquatic freshwater
- EP-marine: acquatic marine
- EP-terrestrial

Photochemical ozone formation

The Photochemical Ozone Creation Potential is the ozone formation in low atmosphere. This is quite common in the cities where a great amount of pollutants (like VOC and NOx) are emitted every day (industrial emissions and vehicles). It is mainly diffused during the summertime.

Depletion of abiotic resources – minerals and metals Abiotic Depletion Potential elements refers to the depletion of the mineral resources.

ADP minerals&metals

Depletion of abiotic resources – fossil fuel

Abiotic Depletion Potential fossil fuel refers to the depletion of the fossil fuel resources.

ADP - fossil

Water use

It expresses the potential deprivation of water, that consists in not having the water needs satisfied.

WDP

The following tables show the environmental impacts for the products considered according to the requirements of EN15804:2012+A2:2019. The results are referred to the declared unit (see § 4). The additional environmental indicators are not declared.

DYNAMON SX-N and DYNAMON SR-N (average)

(1 kg product in bulk)

Dynamon SX-N and **Dynamon SR-N** have similar environmental loads with differences lower than ±10%. According to the GPI – General Program Instruction (ref. §9.3), the results are shown as average in a single set of tables.

Table 5: DYNAMON SX-N and DYNAMON SR-N (average): Potential environmental impact – mandatory indicators according to EN 15804 referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
GWP _{TOTAL}	(kg CO2 eq.)	5,51E-01
GWP _{FOSSIL}	(kg CO ₂ eq.)	3,43E-01
GWP _{BIOGENIC}	(kg CO ₂ eq.)	-3,00E-03
GWP _{LULUC}	(kg CO ₂ eq.)	6,03E-04
ODP	(kg CFC 11 eq.)	1,88E-08
AP	(mol H⁺ eq.)	2,98E-03
EP _{FRESHWATER}	(kg (PO ₄) ³ - eq.)	1,24E-01
EP _{MARINE}	(kg N eq.)	6,41E-04
EP _{TERRESTRIAL}	(mol N eq.)	7,28E-03
POCP	(kg NMVOC eq.)	1,88E-03
ADP _{MINERALS&METALS}	(kg Sb eq.)	4,09E-06
ADP _{FOSSIL}	(MJ)	1,52E+01
WDP	(m ³ world eq.)	2,33E-01

Table 6: DYNAMON SX-N and DYNAMON SR-N (average): Potential environmental impact – additional mandatory and voluntary indicators referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
GWP-GHG	(kg CO ₂ eq.)	3,29E-01

GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

GWP_{TOTAL}: Global Warming Potential total; **GWP**_{FOSSIL}: Global Warming Potential fossil fuels; **GWP**_{BIOGENIC}: Global Warming Potential biogenic; **GWP**_{LULUC}: Global Warming Potential land use and land use change; **ODP**: Depletion Potential of the stratospheric Ozone layer; **AP**: Acidification Potential; **EP**_{FRESHWATER}: Eutrophication Potential, freshwater; **EP**_{MARINE}: Eutrophication Potential, marine; **EP**_{TERRESTRIAL}: Eutrophication Potential, terrestrial; **POCP**: Formation potential of tropospheric ozone; **ADP**_{MINERALSEMETALS}: Abiotic Depletion Potential for non-fossil resources; **ADP**_{FOSSIL}: Abiotic Depletion Potential for fossil resources; **WDP**: Water Deprivation Potential.

Table 7: DYNAMON SX-N and DYNAMON SR-N (average): Use of resources referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
PERE	МЈ	6,39E-01
PERM	МЈ	2,95E-02
PERT	МЈ	6,69E-01
PENRE	МЈ	6,60E+00
PENRM	МЈ	4,28E-02
PENRT	МЈ	6,65E+00
SM	kg	0,00E+00
RSF	МЈ	0,00E+00
NRSF	MJ	0,00E+00
FW	m ³	6,41E-03

PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw materials; **PERM**: Use of renewable primary energy resources used as raw materials; **PERT**: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); **PENRE**: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Use of renewable secondary fuels; **NRSF**: Use of non-renewable secondary fuels; **FW**: Net use of fresh water.

Table 8: DYNAMON SX-N and DYNAMON SR-N (average): Waste production and output flows referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
HWD	kg	2,81E-05
NHWD	kg	9,98E-03
RWD	kg	2,16E-04
Components for re-use	kg	-
Materials for recycling	kg	-
Materials for energy recovery	kg	-
Exported energy, electricity	МЈ	-
Exported energy, thermal	МЈ	-
HWD: Hazardaus wasta disposad: NHWD	Non Hozardous worto	

HWD: Hazardous waste disposed; **NHWD**: Non-Hazardous waste disposed; **RWD**: Radioactive waste disposed

Table 9: DYNAMON SX-N and DYNAMON SR-N (average): Information on biogenic carbon content at the factory gate referred to 1 kg of product in bulk

Biogenic Carbon Content	Unit	Quantity
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	0,00E+00

DYNAMON SX-130

(1 kg product in bulk)

Table 10: DYNAMON SX-130: Potential environmental impact – mandatory indicators according to EN 15804 referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
GWP _{TOTAL}	(kg CO2 eq.)	8,78E-01
GWP _{FOSSIL}	(kg CO ₂ eq.)	5,56E-01
GWP _{BIOGENIC}	(kg CO ₂ eq.)	-3,49E-03
GWP	(kg CO ₂ eq.)	9,90E-04
ODP	(kg CFC 11 eq.)	2,94E-08
AP	(mol H⁺ eq.)	4,70E-03
EP _{FRESHWATER}	(kg (PO ₄) ³ - eq.)	1,91E-01
EP _{MARINE}	(kg N eq.)	1,02E-03
EP _{TERRESTRIAL}	(mol N eq.)	1,16E-02
POCP	(kg NMVOC eq.)	2,98E-03
ADP	(kg Sb eq.)	6,39E-06
ADP _{FOSSIL}	(MJ)	2,41E+01
WDP	(m³ world eq.)	3,66E-01

GWP_{TOTAL}: Global Warming Potential total; **GWP**_{FOSSIL}: Global Warming Potential fossil fuels; **GWP**_{BIOCENIC}: Global Warming Potential biogenic; **GWP**_{LULUC}: Global Warming Potential land use and land use change; **ODP**: Depletion Potential of the stratospheric Ozone layer; **AP**: Acidification Potential; **EP**_{FRESHWATER}: Eutrophication Potential, freshwater; **EP**_{MARINE}: Eutrophication Potential, marine; **EP**_{TERRESTRIA}: Eutrophication Potential, for potential, terrestrial; **POCP**: Formation potential of tropospheric ozone; **ADP**_{MINERALSEMETALS}: Abiotic Depletion Potential for non-fossil resources; **ADP**_{FOSSIL}: Abiotic Depletion Potential for fossil resources; **WDP**: Water Deprivation Potential.

Table 11: DYNAMON SX-130: Potential environmental impact – additional mandatory and voluntary indicators referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
GWP-GHG	(kg CO ₂ eq.)	5,34E-01

GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 12: DYNAMON SX-130: Use of resources referred to 1 kg of product in bulk

Indicator	Unit	A1-A3
PERE	МЈ	1,00E+00
PERM	МЈ	4,81E-02
PERT	МЈ	1,05E+00
PENRE	МЈ	1,09E+01
PENRM	MJ	6,99E-02
PENRT	MJ	1,09E+01
SM	kg	0,00E+00
RSF	МЈ	0,00E+00
NRSF	MJ	0,00E+00
FW	m ³	9,44E-03

PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw materials; **PERM**: Use of renewable primary energy resources used as raw materials; **PERT**: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); **PENRE**: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable secondary fuels; **NRSF**: Use of non-renewable secondary fuels; **FW**: Net use of fresh water.

Table 13: DYNAMON SX-130: Waste production and output flows referred to 1 kg of product in bulk

Unit	A1-A3
kg	4,57E-05
kg	1,58E-02
kg	3,54E-04
kg	-
kg	-
kg	-
MJ	-
MJ	_
	kg kg kg kg kg kg MJ

HWD: Hazardous waste disposed; NHWD: Non-Hazardous waste disposed; RWD: Radioactive waste disposed

Table 14: DYNAMON SX-130: Information on biogenic carbon content at the factory gate referred to 1 kg of product in bulk

Biogenic Carbon Content	Unit	Quantity
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	0,00E+00

GROUT TECH SYSTEM W

(1 kg product in IBC)

Table 15: GROUT TECH SYSTEM W: Potential environmental impact – mandatory indicators according to EN 15804 referred to 1 kg of product in IBC

Indicator	Unit	A1-A3
GWP _{TOTAL}	(kg CO ₂ eq.)	5,87E-01
GWP _{FOSSIL}	(kg CO ₂ eq.)	3,93E-01
GWP _{BIOGENIC}	(kg CO ₂ eq.)	-7,73E-03
GWP	(kg CO ₂ eq.)	6,20E-04
ODP	(kg CFC 11 eq.)	1,84E-08
AP	(mol H⁺ eq.)	3,11E-03
EP _{freshwater}	(kg (PO ₄) ³ - eq.)	1,18E-01
EP _{MARINE}	(kg N eq.)	6,61E-04
EP _{terrestrial}	(mol N eq.)	7,51E-03
POCP	(kg NMVOC eq.)	1,94E-03
	(kg Sb eq.)	3,97E-06
ADP _{FOSSIL}	(MJ)	1,57E+01
WDP	(m³ world eq.)	2,34E-01

GWP_{TOTAL}: Global Warming Potential total; **GWP**_{FOSSIL}: Global Warming Potential fossil fuels; **GWP**_{BIOCENC}: Global Warming Potential biogenic; **GWP**_{LULUC}: Global Warming Potential land use and land use change; **ODP**: Depletion Potential of the stratospheric Ozone layer; **AP**: Acidification Potential; **EP**_{FRESHWATER}: Eutrophication Potential, freshwater; **EP**_{MARINE}: Eutrophication Potential, marine; **EP**_{TERRESTRIAL}: Eutrophication Potential, derivestrial; **POCP**: Formation potential of tropospheric ozone; **ADP**_{MINERALSEMETALS}: Abiotic Depletion Potential for non-fossil resources; **ADP**_{FOSSIL}: Abiotic Depletion Potential for fossil resources; **WDP**: Water Deprivation Potential.

Table 16: GROUT TECH SYSTEM W: Potential environmental impact – additional mandatory and voluntary indicators referred to 1 kg of product in IBC

Indicator	Unit	A1-A3
GWP-GHG	(kg CO ₂ eq.)	3,78E-01

GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 17: GROUT TECH SYSTEM W: Use of resources referred to 1 kg of product plus packaging in IBC

Indicator	Unit	A1-A3
PERE	МЈ	8,91E-01
PERM	MJ	1,12E-01
PERT	MJ	1,00E+00
PENRE	МЈ	7,49E+00
PENRM	МЈ	1,79E-01
PENRT	МЈ	7,67E+00
SM	kg	0,00E+00
RSF	МЈ	0,00E+00
NRSF	МЈ	0,00E+00
FW	m ³	6,73E-03

PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw materials; **PERM**: Use of renewable primary energy resources used as raw materials; **PERT**: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); **PENRE**: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRM**: Use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Total use of non-renewable primary energy resources used as raw materials; **PENRT**: Use of renewable secondary fuels; **NRSF**: Use of non-renewable secondary fuels; **FW**: Net use of fresh water.

Table 18: GROUT TECH SYSTEM W: Waste production and output flows referred to 1 kg of product in IBC

Indicator	Unit	A1-A3
HWD	kg	2,93E-05
NHWD	kg	1,90E-02
RWD	kg	2,57E-04
Components for re-use	kg	-
Materials for recycling	kg	-
Materials for energy recovery	kg	-
Exported energy, electricity	МЈ	-
Exported energy, thermal	МЈ	-
LIMP: Lazardaus wasta dispasadi NUNAP: Nap Lazardaus wasta dispasadi DMP;		

HWD: Hazardous waste disposed; **NHWD**: Non-Hazardous waste disposed; **RWD**: Radioactive waste disposed

Table 19: GROUT TECH SYSTEM W: Information on biogenic carbon content at the factory gate referred to 1 kg of product in IBC

Biogenic Carbon Content	Unit	Quantity
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	0,00E+00

Tables from 5 to 19 show absolute results for all the environmental categories considered.

The main environmental impacts of the products life cycle come from extraction and processing of raw materials (**module A1**). The Product stage (**module A3**) doesn't affect considerably the results for the products in bulk, but it has a relevant contribution for Grout Tech System W because of the IBC packging.

More details about electrical mix used in this EPD, is shown below

	Data source	GWP	Unit
Electricity grid mix (IT) – 2016	Sphera database	0,437	kg CO₂-eqv/ kWh
Electricity grid mix (NO) – 2016	Sphera database	0,0304	kg CO2-eqv/ kWh

8. DATA QUALITY

Table 20: Data quality

Dataset & Geographical reference	Database (source)	Temporary reference
	A1; A3	
Modified Acrylic Polymers	Sphera Database; ecoinvent 3.6; supplier	2019
Water	Sphera Database;	2019
Additives (EU)	Sphera Database; ecoinvent 3.6	2019
Electricity grid mix (IT, NO)	Sphera Database	2016
A2		
Truck, Euro 4, 27t payload (GLO)	Sphera Database	2019
Oceanic ship (27500 DWT – GLO)	Sphera Database	2019
Diesel for transport (EU)	Sphera Database	2016
Heavy Fuel Oil (EU)	Sphera Database	2016

All data included in table above refer to a period between 2016 and 2019; the most relevant ones are specific from supplier, while the others (i.e. transport and minor contribution dataset), come from European and global databases.

All dataset are not more than 10 years old according to EN 15804 §6.3.8.2 "Data quality requirements".

Primary data concern the year 2019 and represent the whole annual production.

9. REQUISITE EVIDENCE

9.1 Indication for the calculation of Module A4 (Transport from the factory to the jobsite)

In order to calculate the impact related to the transport of 1kg of product from the factory gate (Sagstua) to the jobsite, you can use the following formula:

Transport Impact = EF (kg/DU) * distance (km)

Impact Category	Unit	EF (Emission Factor)
GWP _{TOTAL}	(kg CO ₂ eq.)	6,08E-05
GWP _{FOSSIL}	(kg CO ₂ eq.)	6,04E-05
GWP	(kg CO ₂ eq.)	-1,01E-07
GWP	(kg CO ₂ eq.)	4,88E-07
ODP	(kg CFC 11 eq.)	1,11E-20
AP	(mol H+ eq.)	6,84E-08
EP _{FRESHWATER}	(kg (PO ₄) ³ - eq.)	1,84E-10
	(kg N eq.)	2,07E-08
EP	(mol N eq.)	2,47E-07
POCP	(kg NMVOC eq.)	5,64E-08
	(kg Sb eq.)	4,88E-12
ADP _{FOSSIL}	(MJ)	8,05E-04
WDP	(m ³ world eq.)	5,88E-07

Example:

If the product is transported from Sagstua (production plant) to Oslo (Jobsite) for around 90 km, the GWP impact result is:

GWP_{TOTAL} = 6,08E-05 * 90km = 5,47E-03

10.VERIFICATION AND REGISTRATION

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

CEN standard EN15804 served as the Core Product Category Rules (PCR)	
PCR:	PCR 2019:14 Construction products (EN 15804:A2), Version 1.0, 2019-12-20, UN CPC code 54
PCR review was conducted by:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/ contact.
Independent third-party verification of the declaration and data, according to ISO 14025:2006:	EPD Process Certification
Third party verifier:	Certiquality S.r.l. Number of accreditation: 003H rev15
Accredited or approved by:	Accredia
Procedure for follow-up of data during EPD validity involves third-party verifier	⊠ Yes □ No

11. REFERENCES

- EN 15804: SUSTAINABILITY OF CONSTRUCTION WORKS -ENVIRONMENTAL PRODUCT DECLARATIONS - CORE RULES FOR THE PRODUCT CATEGORY OF CONSTRUCTION PRODUCTS
- EN 934-2: "ADMIXTURES FOR CONCRETE, MORTAR AND GROUT - PART 2: CONCRETE ADMIXTURES - DEFINITIONS, REQUIREMENTS, CONFORMITY, MARKING AND LABELLING".
- GENERALPROGRAMMEINSTRUCTIONSOFTHEINTERNATIONAL EPD® SYSTEM. VERSION 3.01
- ISO 14025 ENVIRONMENTAL LABELS AND DECLARATIONS -TYPE III ENVIRONMENTAL DECLARATIONS - PRINCIPLES AND PROCEDURES
- ISO 14044 ENVIRONMENTAL MANAGEMENT LIFE CYCLE ASSESSMENT – REQUIREMENTS AND GUIDELINES
- PCR 2019:14 CONSTRUCTION PRODUCTS (EN 15804: A2), UN CPC CODE 54; VERSION 1.0

CONTACT INFORMATION

EPD owner:

Mapei Norge AS

www.mapei.com/NO-NO/

LCA author:

Mapei SpA

www.mapei.it; Environmental Sustainability Office

Programme operator:

The International EPD® System

Address: EPD International AB Box 210 60 SE-100 31 Stockholm Sweden

Website: www.environdec.com E-mail: info@environdec.com

HEAD OFFICE MAPEI SpA Via Cafiero, 22 - 20158 Milan Tel. +39-02-37673.1 mapei com

mapei.com mapei@mapei.it

